Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 47, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532508

RESUMO

Sturge-Weber syndrome (SWS), a neurocutaneous disorder, is characterized by capillary malformations (CM) in the skin, brain, and eyes. Patients may suffer from seizures, strokes, and glaucoma, and only symptomatic treatment is available. CM are comprised of enlarged vessels with endothelial cells (ECs) and disorganized mural cells. Our recent finding indicated that the R183Q mutation in ECs leads to heightened signaling through phospholipase Cß3 and protein kinase C, leading to increased angiopoietin-2 (ANGPT2). Furthermore, knockdown of ANGPT2, a crucial mediator of pro-angiogenic signaling, inflammation, and vascular remodeling, in EC-R183Q rescued the enlarged vessel phenotype in vivo. This prompted us to look closer at the microenvironment in CM-affected vascular beds. We analyzed multiple brain histological sections from patients with GNAQ-R183Q CM and found enlarged vessels devoid of mural cells along with increased macrophage-like cells co-expressing MRC1 (CD206, a mannose receptor), CD163 (a scavenger receptor and marker of the monocyte/macrophage lineage), CD68 (a pan macrophage marker), and LYVE1 (a lymphatic marker expressed by some macrophages). These macrophages were not found in non-SWS control brain sections. To investigate the mechanism of increased macrophages in the perivascular environment, we examined THP1 (monocytic/macrophage cell line) cell adhesion to EC-R183Q versus EC-WT under static and laminar flow conditions. First, we observed increased THP1 cell adhesion to EC-R183Q compared to EC-WT under static conditions. Next, using live cell imaging, we found THP1 cell adhesion to EC-R183Q was dramatically increased under laminar flow conditions and could be inhibited by anti-ICAM1. ICAM1, an endothelial cell adhesion molecule required for leukocyte adhesion, was strongly expressed in the endothelium in SWS brain histological sections, suggesting a mechanism for recruitment of macrophages. In conclusion, our findings demonstrate that macrophages are an important component of the perivascular environment in CM suggesting they may contribute to the CM formation and SWS disease progression.


Assuntos
Capilares/anormalidades , Síndrome de Sturge-Weber , Malformações Vasculares , Humanos , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/patologia , Síndrome de Sturge-Weber/terapia , Células Endoteliais/metabolismo , Capilares/patologia , Macrófagos/metabolismo , Microambiente Tumoral , Proteínas de Transporte Vesicular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo
2.
Nat Commun ; 14(1): 6506, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845224

RESUMO

Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Lesões por Radiação , Animais , Humanos , Lesão Pulmonar/etiologia , Pulmão/efeitos da radiação , Raios gama/efeitos adversos , Dispositivos Lab-On-A-Chip
3.
Adv Biosyst ; 4(9): e1900230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744807

RESUMO

The functional state of the neurovascular unit (NVU), composed of the blood-brain barrier and the perivasculature that forms a dynamic interface between the blood and the central nervous system (CNS), plays a central role in the control of brain homeostasis and is strongly affected by CNS drugs. Human primary brain microvascular endothelium, astrocyte, pericyte, and neural cell cultures are often used to study NVU barrier functions as well as drug transport and efficacy; however, the proteomic and metabolomic responses of these different cell types are not well characterized. Culturing each cell type separately, using deep coverage proteomic analysis and characterization of the secreted metabolome, as well as measurements of mitochondrial activity, the responses of these cells under baseline conditions and when exposed to the NVU-impairing stimulant methamphetamine (Meth) are analyzed. These studies define the previously unknown metabolic and proteomic profiles of human brain pericytes and lead to improved characterization of the phenotype of each of the NVU cell types as well as cell-specific metabolic and proteomic responses to Meth.


Assuntos
Metaboloma/efeitos dos fármacos , Metanfetamina/farmacologia , Neurônios , Pericitos , Proteoma/efeitos dos fármacos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Cultivadas , Estimulantes do Sistema Nervoso Central/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Metabolômica , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pericitos/citologia , Pericitos/efeitos dos fármacos , Proteoma/análise , Proteômica
4.
Nat Biomed Eng ; 4(4): 407-420, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988458

RESUMO

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.


Assuntos
Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Robótica/métodos , Barreira Hematoencefálica , Encéfalo , Calibragem , Técnicas de Cultura de Células/instrumentação , Desenho de Equipamento , Coração , Humanos , Intestinos , Rim , Fígado , Pulmão , Robótica/instrumentação , Pele
5.
Nat Commun ; 10(1): 2621, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197168

RESUMO

The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Microfluídica/instrumentação , Anticorpos/farmacologia , Astrócitos , Barreira Hematoencefálica/citologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Endotélio Vascular/citologia , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Microvasos/citologia , Pericitos , Permeabilidade , Células-Tronco Pluripotentes , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos
6.
Nat Biotechnol ; 36(9): 865-874, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125269

RESUMO

The neurovascular unit (NVU) regulates metabolic homeostasis as well as drug pharmacokinetics and pharmacodynamics in the central nervous system. Metabolic fluxes and conversions over the NVU rely on interactions between brain microvascular endothelium, perivascular pericytes, astrocytes and neurons, making it difficult to identify the contributions of each cell type. Here we model the human NVU using microfluidic organ chips, allowing analysis of the roles of individual cell types in NVU functions. Three coupled chips model influx across the blood-brain barrier (BBB), the brain parenchymal compartment and efflux across the BBB. We used this linked system to mimic the effect of intravascular administration of the psychoactive drug methamphetamine and to identify previously unknown metabolic coupling between the BBB and neurons. Thus, the NVU system offers an in vitro approach for probing transport, efficacy, mechanism of action and toxicity of neuroactive drugs.


Assuntos
Células Endoteliais/metabolismo , Dispositivos Lab-On-A-Chip , Neurônios/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Humanos , Metanfetamina/farmacologia , Fenótipo
7.
Biomaterials ; 139: 187-194, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618348

RESUMO

Here we describe injectable, ultrasound (US)-responsive, nanoparticle aggregates (NPAs) that disintegrate into slow-release, nanoscale, drug delivery systems, which can be targeted to selective sites by applying low-energy US locally. We show that, unlike microbubble based drug carriers which may suffer from stability problems, the properties of mechanical activated NPAs, composed of polymer nanoparticles, can be tuned by properly adjusting the polymer molecular weight, the size of the nanoparticle precursors as well as the percentage of excipient utilized to hold the NPA together. We then apply this concept to practice by fabricating NPAs composed of nanoparticles loaded with Doxorubicin (Dox) and tested their ability to treat tumors via ultrasound activation. Mouse studies demonstrated significantly increased efficiency of tumor targeting of the US-activated NPAs compared to PLGA nanoparticle controls (with or without US applied) or intact NPAs. Importantly, when the Dox-loaded NPAs were injected and exposed to US energy locally, this increased ability to concentrate nanoparticles at the tumor site resulted in a significantly greater reduction in tumor volume compared to tumors treated with a 20-fold higher dose of the free drug.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Materiais Biocompatíveis/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Excipientes , Ácido Láctico/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Microbolhas , Peso Molecular , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Ultrassom
8.
Lab Chip ; 17(13): 2294-2302, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28608907

RESUMO

Here we demonstrate that microfluidic cell culture devices, known as Organs-on-a-Chips can be fabricated with multifunctional, real-time, sensing capabilities by integrating both multi-electrode arrays (MEAs) and electrodes for transepithelial electrical resistance (TEER) measurements into the chips during their fabrication. To prove proof-of-concept, simultaneous measurements of cellular electrical activity and tissue barrier function were carried out in a dual channel, endothelialized, heart-on-a-chip device containing human cardiomyocytes and a channel-separating porous membrane covered with a primary human endothelial cell monolayer. These studies confirmed that the TEER-MEA chip can be used to simultaneously detect dynamic alterations of vascular permeability and cardiac function in the same chip when challenged with the inflammatory stimulus tumor necrosis factor alpha (TNF-α) or the cardiac targeting drug isoproterenol. Thus, this Organ Chip with integrated sensing capability may prove useful for real-time assessment of biological functions, as well as response to therapeutics.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Linhagem Celular , Impedância Elétrica , Eletrodos , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas Analíticas Microfluídicas/métodos
9.
Stem Cells ; 32(9): 2492-501, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24916688

RESUMO

Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, postmitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here, we show that ectopic expression of Msx1 reprograms postmitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated.


Assuntos
Reprogramação Celular/fisiologia , Leucócitos Mononucleares/citologia , Fibras Musculares Esqueléticas/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células , Ciclo Celular/fisiologia , Desdiferenciação Celular/fisiologia , Leucócitos Mononucleares/metabolismo , Fator de Transcrição MSX1/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo
10.
PLoS One ; 8(10): e76122, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098430

RESUMO

Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation.


Assuntos
Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Feminino , Humanos , Neoplasias Mamárias Experimentais , Camundongos , Modelos Biológicos , Estadiamento de Neoplasias , Neoplasias/patologia , Microambiente Tumoral
11.
Nano Lett ; 12(6): 3213-7, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22554317

RESUMO

A cancer nanotherapeutic has been developed that targets the extracellular matrix (ECM)-modifying enzyme lysyl oxidase (LOX) and alters the ECM structure. Poly(d,l-lactide-co-glycolide) nanoparticles (∼220 nm) coated with a LOX inhibitory antibody bind to ECM and suppress mammary cancer cell growth and invasion in vitro as well as tumor expansion in vivo, with greater efficiency than soluble anti-LOX antibody. This nanomaterials approach opens a new path for treating cancer with higher efficacy and decreased side effects.


Assuntos
Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Nanocápsulas/administração & dosagem , Proteína-Lisina 6-Oxidase/administração & dosagem , Animais , Linhagem Celular Tumoral , Camundongos
12.
Dev Cell ; 21(4): 758-69, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21924961

RESUMO

Mesenchymal condensation is critical for organogenesis, yet little is known about how this process is controlled. Here we show that Fgf8 and Sema3f, produced by early dental epithelium, respectively, attract and repulse mesenchymal cells, which cause them to pack tightly together during mouse tooth development. Resulting mechanical compaction-induced changes in cell shape induce odontogenic transcription factors (Pax9, Msx1) and a chemical cue (BMP4), and mechanical compression of mesenchyme is sufficient to induce tooth-specific cell fate switching. The inductive effects of cell compaction are mediated by suppression of the mechanical signaling molecule RhoA, and its overexpression prevents odontogenic induction. Thus, the mesenchymal condensation that drives tooth formation is induced by antagonistic epithelial morphogens that manifest their pattern-generating actions mechanically via changes in mesenchymal cell shape and altered mechanotransduction.


Assuntos
Embrião de Mamíferos/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Mecanotransdução Celular , Mesoderma/fisiologia , Odontogênese , Dente/embriologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Fator 8 de Crescimento de Fibroblasto/genética , Perfilação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microfluídica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX9 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Dente/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP
13.
Nat Nanotechnol ; 3(1): 36-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18654448

RESUMO

Complex cell behaviours are triggered by chemical ligands that bind to membrane receptors and alter intracellular signal transduction. However, future biosensors, medical devices and other microtechnologies that incorporate living cells as system components will require actuation mechanisms that are much more rapid, robust, non-invasive and easily integrated with solid-state interfaces. Here we describe a magnetic nanotechnology that activates a biochemical signalling mechanism normally switched on by binding of multivalent chemical ligands. Superparamagnetic 30-nm beads, coated with monovalent ligands and bound to transmembrane receptors, magnetize when exposed to magnetic fields, and aggregate owing to bead-bead attraction in the plane of the membrane. Associated clustering of the bound receptors acts as a nanomagnetic cellular switch that directly transduces magnetic inputs into physiological cellular outputs, with rapid system responsiveness and non-invasive dynamic control. This technique may represent a new actuator mechanism for cell-based microtechnologies and man-machine interfaces.


Assuntos
Cálcio/metabolismo , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Nanotecnologia/métodos , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Células Cultivadas , Humanos , Mastócitos/efeitos da radiação , Transdução de Sinais/efeitos da radiação
14.
J Cell Sci ; 119(Pt 3): 508-18, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16443749

RESUMO

To understand how cells sense and adapt to mechanical stress, we applied tensional forces to magnetic microbeads bound to cell-surface integrin receptors and measured changes in bead displacement with sub-micrometer resolution using optical microscopy. Cells exhibited four types of mechanical responses: (1) an immediate viscoelastic response; (2) early adaptive behavior characterized by pulse-to-pulse attenuation in response to oscillatory forces; (3) later adaptive cell stiffening with sustained (>15 second) static stresses; and (4) a large-scale repositioning response with prolonged (>1 minute) stress. Importantly, these adaptation responses differed biochemically. The immediate and early responses were affected by chemically dissipating cytoskeletal prestress (isometric tension), whereas the later adaptive response was not. The repositioning response was prevented by inhibiting tension through interference with Rho signaling, similar to the case of the immediate and early responses, but it was also prevented by blocking mechanosensitive ion channels or by inhibiting Src tyrosine kinases. All adaptive responses were suppressed by cooling cells to 4 degrees C to slow biochemical remodeling. Thus, cells use multiple mechanisms to sense and respond to static and dynamic changes in the level of mechanical stress applied to integrins.


Assuntos
Adaptação Fisiológica , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Bovinos , Células Endoteliais/citologia , Estresse Mecânico , Quinases da Família src/metabolismo
15.
FASEB J ; 16(10): 1195-204, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12153987

RESUMO

Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.


Assuntos
Movimento Celular , Pseudópodes/ultraestrutura , Células 3T3 , Animais , Bovinos , Adesão Celular , Tamanho Celular , Células Cultivadas , Citoesqueleto/ultraestrutura , Endotélio Vascular/fisiologia , Endotélio Vascular/ultraestrutura , Matriz Extracelular/ultraestrutura , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Adesões Focais/ultraestrutura , Camundongos , Fibras de Estresse/ultraestrutura , Estresse Mecânico
16.
Proc Natl Acad Sci U S A ; 99(16): 10470-5, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12142468

RESUMO

Neuropilin-1 (NRP1) is a cell-surface receptor for both vascular endothelial growth factor(165) (VEGF(165)) and class 3 semaphorins that is expressed by neurons and endothelial cells. NRP1 is required for normal developmental angiogenesis in mice. The zebrafish is an excellent system for analyzing vascular development. Zebrafish intersegmental vessels correspond to mammalian capillary sprouts, whereas the axial vessels correspond to larger blood vessels, such as arteries. The zebrafish NRP1 gene (znrp1) was isolated and when overexpressed in cells, zNRP1 protein was a functional receptor for human VEGF(165). Whole-mount in situ hybridization showed that transcripts for znrp1 during embryonic and early larval development were detected mainly in neuronal and vascular tissues. Morpholino-mediated knockdown of zNRP1 in embryos resulted in vascular defects, most notably impaired circulation in the intersegmental vessels. Circulation via trunk axial vessels was not affected. Embryos treated with VEGF receptor-2 kinase inhibitor had a similar intersegmental vessel defect suggesting that knockdown of zNRP1 reduces VEGF activity. To determine whether NRP1 and VEGF activities were interdependent in vivo, zNRP1 and VEGF morpholinos were coinjected into embryos at concentrations that individually did not significantly inhibit blood vessel development. The result was a potent inhibition of blood cell circulation via both intersegmental and axial vessels demonstrating that VEGF and NRP1 act synergistically to promote a functional circulatory system. These results provide the first physiological demonstration that NRP1 regulates angiogenesis through a VEGF-dependent pathway.


Assuntos
Fatores de Crescimento Endotelial/metabolismo , Linfocinas/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Sequência de Bases , DNA Complementar , Hibridização In Situ , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Neuropilina-1 , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...